

MedDream

integration MANUAL

(version 8.3.1)

MedDream WEB DICOM Viewer integration manual

© 2023, Softneta UAB, Kaunas

All rights reserved in the event of granting of patents or registration as a utility patent. All names of companies and

products mentioned in this user’s manual may be trademarks or registered trademarks. References to products of

other manufacturers are for information purposes only. Such references are intended neither as an approval nor a

recommendation of these products. Softneta UAB accepts no liability for the performance or use of such products.

Other brand names, software and hardware names used in this user’s manual are subject to trademark or patent

protection. The quoting of products is for informational purposes only and does not represent a trademark misuse. This

Servicing Manual is protected by copyright. Unless expressly authorized in writing, dissemination, duplication or other

commercial exploitation of this documentation set or communication of its contents or parts of it is not permitted. In

case of infringement, the violator may be liable to pay compensation for damages. Specifications due to technical

developments are subject to change. This Servicing Manual is not subject to the revision service. Please contact the

manufacturer or authorized dealer to request the latest edition of Servicing Manual.

MedDream WEB DICOM Viewer integration manual

Table of Contents

Table of Contents .. 3
Document purpose .. 4

Explanation of symbols used ... 4
Introduction ... 5
Minimum system requirements .. 6
Scenarios for MedDream URL integration .. 7

Token enabled MedDream URL integration scenarios using MedDream TokenService ... 7
One step token enabled MedDream URL integration .. 8
Two steps token enabled MedDream URL integration ..10

Token enabled MedDream URL integration scenario using 3rd party token generation & validation service 13
Integration scenario using MedDream token ..13
Integration scenario using JSON Web Token (JWT) ..15

Token disabled MedDream URL integration scenario ... 19
MedDream integration interface ... 21

Integration examples ... 25
MedDream TokenService description ... 25

Installation and configuration ... 26
Installation testing ...28

Generate token request... 29
Validate token request .. 33
Invalidate token request .. 33

Related configuration options... 35
Table of Figures .. 37
Annex I. json structure and parameters description for API v1 ... 38

.json structure example ... 38
Parameters description ... 38
Version related configuration ... 40

Annex II. json structure and parameters description for API v2 .. 41
.json structure example ... 41
Parameters description ... 41
Version related configuration ... 44
API v2 differences from API v1 .. 44

Annex III. json structure and parameters description for API v3 ... 45
.json structure example ... 45
Parameters description ... 46
Version related configuration ... 49
API v3 differences from API v2 .. 49

Annex IV. Changes in “permissions”: […] allowed values in v0.8 ... 50
“permissions”: […] allowed values in v0.8 differences from v0.7 .. 50

Annex V. Changes in “patient”: […] values validation in v0.9 ... 51
“patient”: […] parameters validation in v0.9 differences from v0.8 ... 51

Annex VI. Changes in “permissions”: […] allowed values in v1.0 ... 52
“permissions”: […] allowed values in v1.0 differences from v0.9 .. 52

Annex VII. Changes in “permissions”: […] allowed values in v1.1 .. 53
“permissions”: […] allowed values in v1.1 differences from v1.0 .. 53

Annex VIII. json structure and parameters description for API v4 .. 54
"studies" object and "history" array object: allowed identifiers in v1.2 differences from v1.1...................................... 54
.json structure example ... 54
Parameters description ... 55
Version related configuration ... 58
API v4 differences from API v3 .. 58

Index .. 60

Document purpose 4

Document purpose

The purpose of this document is to provide a quick guide for integrating MedDream viewing functionality with information

system (called Integrating information system or Integrating IS further in the document). It is intended for information system

developers who aim for a fast and effective integration of MedDream viewing functionality.

If you have any questions or comments regarding this user`s manual, please contact Softneta UAB Customer support:

support@softneta.com .

Explanation of symbols used

The symbols used in this document refer to important information which warns against possible integration errors or security

issues and contain useful notes. Whenever you see these symbols, read the accompanying information carefully and

observe the recommendations.

 WARNING! This indicates a hazardous situation which may cause patient death, potential injury or serious health

impairment, requiring professional medical intervention.

 CAUTION! This indicates a hazardous situation which may cause minor potential injury, not requiring professional

medical intervention, or simply cause inconvenience to medical professionals using software without affecting patient health

status or health changes.

 NOTE! Information, hints and advice for a better understanding of the instructions to be observed in the operation of

the instrument.

mailto:support@softneta.com

Introduction 5

Introduction

MedDream is a HTML based package for PACS server which is designed to aid professionals in every day’s decision-

making process, connecting all the medical data into a unified and fast performing network. MedDream ensures a fast and

reliable way to present and analyze the medical data (images and video files) on various devices: computers, smart phones,

tablets and so forth.

MedDream can be used as a standalone WEB Viewer application as well as an URL-integrated WEB Viewer in other

Integrating IS, such as PACS system, Radiology information system (RIS), or Hospital information system (HIS).

 NOTE! The same MedDream installation can use both, login (application) and URL, authentication at the same time if

particular authentication ways are permitted by configuration (see parameters in section Related configuration options).

But only one active authentication (either login, or URL) is permitted from the particular work environment (one active

session per browser at user ‘s workplace).

The following information is provided in the document:

• Sample scenarios for MedDream URL integration into RIS/HIS workflow with different URL parameters on page 7;

• Description of MedDream integration interface;

• MedDream TokenService description and integration interface;

• Related MedDream DICOM Viewer configuration options.

Other integration methods:

MedDream can be integrated via its Communication API – a JavaScript-based wrapper over the legacy/token URL method.

See the Communication API specification (you can obtain it from support@softneta.com).

There is a third method where the image-displaying part of the frontend is added to your application as a React component,

and you implement all buttons by yourself. See the Viewport API specification, (you can obtain it from

support@softneta.com).

mailto:support@softneta.com
mailto:support@softneta.com

Minimum system requirements 6

Minimum system requirements

Minimum hardware and software requirements for MedDream (server side) should be checked in Servicing MANUAL.

Minimum hardware and software requirements for MedDream TokenService are described in section MedDream

TokenService description.

Scenarios for MedDream URL integration 7

Scenarios for MedDream URL integration

MedDream URL integration supports two ways of parameter passing:

• Direct parameters in URL, further called as token disabled mode;

• Generating the token that is related with a particular parameter set (called token parameters further in the

document) and passing the token as URL parameter instead of direct parameters usage in URL, further called as

token enabled mode.

 NOTE! One MedDream installation can work only in one mode at a time – either token enabled mode, or token

disabled mode – that is enabled by configuration (see parameters in section Related configuration options).

The sample scenarios for MedDream URL integration in token enabled mode are described in section “Token enabled

MedDream URL integration scenarios using MedDream TokenService”. The supporting MedDream TokenService, that

is required for token generation and validation, is described in section “

Integration examples

Integration into HIS samples can be found at docker hub https://hub.docker.com/r/meddream/orthanc-dicom-viewer.

MedDream TokenService description”. Scenario for MedDream URL integration in token disabled mode is described in

section “Token disabled MedDream URL integration scenario”.

 CAUTION! Token disabled integration is not security save.

MedDream URL integration supports three viewer window opening ways:

• Open the new MedDream viewer in browser and display the study or studies in it;

• Open the study or studies in already existing MedDream viewer window. Optional URL parameter ‘add=true’ should

be used. The parameter can be used in both, token enabled and token disabled, modes. The direct parameters in

URL mode is further called as token disabled mode;

• Open the new MedDream viewer with displayed study or studies in Iframe.

 NOTE! Complete list of supported URL parameters and their combinations is provided in section MedDream

integration interface.

 CAUTION! If Iframe integration is used, it is recommended to set Iframe security configuration (see parameters in

section Related configuration options) in order to reduce the risk of system hacking.

Token enabled MedDream URL integration scenarios using MedDream TokenService

The Integrating IS should implement two integration points in token enabled MedDream URL integration scenario:

• Integration with MedDream TokenService for token generation;

• Integration with MedDream viewing functionality.

The Integrating IS can implement these two integrations by two different scenarios:

Scenarios for MedDream URL integration 8

• In one step, when token is generated after view study request from the user (see One step token enabled MedDream

URL integration);

• In two separate steps, when Integrating system can initiate token generation and creation of MedDream URL with

token, and afterwards the user can use this link (see Two steps token enabled MedDream URL integration).

The sample MedDream Viewer integration architecture with MedDream TokenService installed on separate server machine

is displayed in diagram bellow.

Figure 1. MedDream Viewer and MedDream TokenService integration architecture

The diagram below shows the integration related software components and communication interfaces. The request

(numbered text) corresponds to the particular step in one step token enabled integration scenario (see Figure 3) and is

described in details in table below the Figure 3.

Figure 2. MedDream Viewer and MedDream TokenService integration components

One step token enabled MedDream URL integration

The diagram explains the interaction among user, Integrating information system, MedDream WEB DICOM Viewer and

supporting MedDream TokenService. Each step is explained in the table below the diagram.

Scenarios for MedDream URL integration 9

Figure 3. One step token enabled integration scenario

 NOTE! The integration related steps that requires handling in the Integrating IS are underlined.

Scenario step Description

1: open Integrating IS page

in browser

The user that is authenticated and working in Integrating IS, asks to open page that

contains link for opening the study in MedDream WEB DICOM Viewer page.

2: display Integrating IS page

with view study link

The Integrating IS displaying the page with control that activates study or studies opening in

MedDream viewer implementation.

 NOTE! The user authentication and access to study control should be ensured by the

Integrating IS.

3: click view study link The user activates the studies opening in MedDream viewer.

4: generate token request The Integrating IS sends the HTTP POST /v1/generate request to MedDream

TokenService with parameters included in json body. See detailed request and parameters

description in section Generate token request on page 29.

5: return token The MedDream TokenService returns HTTP response with status code and generated

token or error message. See detailed response description in section Generate token

request on page 29.

6: execute MedDream

Viewer URL

The Integrating IS creates the MedDream WEB DICOM Viewer URL with token parameter

and launches it. See detailed token enabled URL description and launching examples in

section MedDream integration interface on page 21.

Scenarios for MedDream URL integration 10

Scenario step Description

7: validate token request The MedDream system sends the HTTP GET /v1/validate request to MedDream

TokenService with token parameter that was specified in URL. See detailed request

description in section Validate token request on page 33.

 CAUTION! The single use token will be disabled at the response with status code

200 without considering whether the studies are opened in viewer or process is canceled.

8: return token parameters The MedDream TokenService returns HTTP response with status code and json file with

parameters (studies, storages, permissions and other) for the token or error message. See

detailed response description in section Validate token request on page 33.

9: create/update MedDream

URL session

The MedDream system checks the MedDream authentication status of user‘s work

environment (currently used browser) and performs the required actions: either updates the

existing session by granting the access to the studies, viewing of which is authorized by

token parameters, or initiates the user authentication based on token parameters and

creates a new session.

 CAUTION! If the active MedDream session is not a URL session, the user will be

prompted to choose either to close the current application user session and open a new

URL session, or to stay logged in as application user. If the active MedDream session is a

URL session with the permissions or restrictions, that differ from the permissions or

restrictions returned in token parameters, then the active URL session and all opened

MedDream windows and tabs will be closed and a new URL session will be created and a

new MedDream viewer window will be opened.

10: get studies The MedDream system requests the study data from storage.

 NOTE! The study identifier and storage identifier are retrieved from token parameters.

If token contains multiple studies from multiple storages, multiple requests are made.

11: return studies The study structure and image data are returned from storage.

12: display/reload

MedDream Viewer page with

studies

The MedDream system renders the viewer page with the study images and the page is

displayed to user.

 NOTE! MedDream viewer integration provides several study opening ways: opening

in a new browser window or tab, opening in already existing MedDream viewer window or

tab, opening in iFrame included in page of Integrated IS. The opening way depends on

launching code that is implemented by Integrating IS in step ‘6: execute MedDream URL’.

See detail URL description and launching examples in section MedDream integration

interface on page 21.

 NOTE! The system may be configured (see section Related configuration options)

to open the patient studies modal with studies list instead of opening the studies directly in

the Viewer, if token contains studies for only one patient, identified by patient ID, and

system properties.

Two steps token enabled MedDream URL integration

The diagram explains the interaction among user, Integrating information system, MedDream WEB DICOM Viewer and

supporting MedDream TokenService. Each step is explained in the table below the diagram.

Scenarios for MedDream URL integration 11

Figure 4. Two steps token enabled integration scenario

 NOTE! The integration related steps that requires handling in the Integrating IS are underlined.

Scenario step Description

1: generate token request The Integrating IS sends the HTTP POST /v1/generate request to MedDream

TokenService with parameters included in json body. See detailed request and

parameters description in section Generate token request on page 29.

2: return token The MedDream TokenService returns HTTP response with status code and generated

token or error message. See detail response description in section Generate token

request on page 29.

3: create MedDream Viewer

URL

The Integrating IS creates the MedDream WEB DICOM Viewer URL with token

parameter. See detailed token enabled URL description and launching examples in

section MedDream integration interface on page 21.

4: deliver MedDream Viewer

URL to user

The Integrating IS delivers the link to user, for example, sends it by e-mail.

5. launch MedDream Viewer

URL

The user opens the received link in browser.

Scenarios for MedDream URL integration 12

Scenario step Description

6: validate token request The MedDream system sends the HTTP GET /v1/validate request to MedDream

TokenService with token parameter that was specified in URL. See detail request

description in section Validate token request on page 33.

 CAUTION! The single use token will be disabled at the response with status code

200 without considering whether the studies are opened in viewer or process is canceled.

7: return token parameters The MedDream TokenService returns HTTP response with status code and json file with

parameters (studies, storages, permissions and other) for the token or error message.

See detail response description in section Validate token request on page 33.

8: create/update MedDream

URL session

The MedDream system checks the MedDream authentication status of user‘s work

environment (currently used browser) and performs the required actions: either updates

the existing session by granting the access to the studies, viewing of which is authorized

by token parameters, or initiates the user authentication based on token parameters and

creates the new session.

 CAUTION! If the active MedDream session is not a URL session, the user will be

prompted to choose either to close the current application user session and open a new

URL session, or to stay logged in as application user. If the active MedDream session is

a URL session with the permissions or restrictions, that differ from the permissions or

restrictions returned in token parameters, then the active URL session and all opened

MedDream windows and tabs will be closed and a new URL session will be created and

a new MedDream viewer window will be opened.

9: get studies The MedDream system requests the study data from storage.

 NOTE! The study identifier and storage identifier are retrieved from token

parameters. If token contains multiple studies from multiple storages, multiple requests

are made.

10: return studies The study structure and image data are returned from storage.

11: display MedDream Viewer

page with studies

The MedDream system renders the viewer page with the study images and the page is

displayed to user.

 NOTE! MedDream viewer integration provides several study opening ways:

opening in a new browser window or tab, opening in already existing MedDream viewer

window or tab, opening in Iframe included in page of Integrated IS. The opening way

depends on link that is created by Integrating IS in step ‘3: create MedDream URL’. See

detail URL description and launching examples in section MedDream integration

interface on page 21.

 NOTE! The system may be configured (see section Related configuration

options) to open the patient studies modal with studies list instead of opening the studies

directly in the Viewer, if token contains studies for only one patient, identified by patient

ID, and system properties.

 CAUTION! Opening MedDream viewer in Iframe is not recommended in two steps

scenario.

Scenarios for MedDream URL integration 13

Token enabled MedDream URL integration scenario using 3rd party token generation &

validation service

 NOTE! Instead of MedDream TokenService the Integrating IS can use other token generation and validation

service implementation as long as it supports the identical token validation interface (see section Validate token

request) and parameters that are used by MedDream.

Integrating IS can use the 3rd party self-standing application for token generation and validation. In this case the integration

architecture and scenarios would be identical as with MedDream TokenService (see section Token enabled MedDream

URL integration scenarios using MedDream TokenService).

Integrating IS can implement the token generation and validation services itself. The diagrams bellow describes the

components and scenario for token enabled MedDream URL integration with token generation and validation implemented

by the Integrating IS.

Figure 5. MedDream Viewer and Integrating IS with internal token service implementation integration components

The description of the communication interfaces is provided in the subsections with scenarios description.

The MedDream supports two of 3rd part token using scenarios:

• Scenario when the token is used exactly as in token enabled MedDream URL integration is described in section ;

• Scenario using the JSON Web Token (JWT) is described in section .

Integration scenario using MedDream token

The diagram bellow explains the interaction among user, Integrating information system, and MedDream WEB DICOM

Viewer, when integrating IS uses MedDream type token. Integrating IS can implement the token generation and validation

services itself, or use the 3rd party self-standing application for token generation and validation. Each step is explained in

the table below the diagram.

Scenarios for MedDream URL integration 14

Figure 6. Token enabled integration with MedDream type token service implementation in Integrating IS scenario

 NOTE! The integration related steps that require handling in the Integrating IS are underlined.

Scenario step Description

1: open Integrating IS page

in browser

The user that is authenticated and working in Integrating IS, asks to open page that

contains link for opening the study in MedDream WEB DICOM Viewer page.

2: display Integrating IS page

with view study link

The Integrating IS displaying the page with control that activates study or studies opening in

MedDream viewer implementation.

 NOTE! The user authentication and access to study control should be ensured by the

Integrating IS.

3: launch view study link The user activates the studies opening in MedDream viewer.

4: generate token The Integrating IS should implement the token generation functionality and generate the

token, which would be passed as parameter in MedDream URL request and validate token

request.

 NOTE! The token should not include URL escape characters.

5: execute MedDream

Viewer URL

The Integrating IS creates the MedDream WEB DICOM Viewer URL with token parameter

and launches it. See detailed token enabled URL description and launching examples in

section MedDream integration interface on page 21.

Scenarios for MedDream URL integration 15

Scenario step Description

6: validate token request The MedDream system sends the HTTP GET /v1/validate request to Integrating IS token

validation service with token parameter that was specified in URL. The service should

return the parameters in json body, as described in section Validate token request on

page 33.

 CAUTION! The Integrating IS should implement the same token validation API as

described in section Validate token request on page 33.

7: return token parameters The Integrating IS token validation service should return HTTP response with status code

and json file with parameters (studies, storages, permissions and other) for the token or

error message.

 CAUTION! The required parameters must be returned. The optional parameter may

be returned, if the parameters-related functionality is required in Integrating IS.

8: create/update MedDream

URL session

The MedDream system checks the MedDream authentication status of user‘s work

environment (currently used browser) and performs the required actions: either updates the

existing session by granting the access to the studies, viewing of which is authorized by

token parameters, or initiates the user authentication based on token parameters and

creates a new session.

 CAUTION! If the active MedDream session is not a URL session, the user will be

prompted to choose either to close the current application user session and open a new

URL session, or to stay logged in as application user. If the active MedDream session is a

URL session with the permissions or restrictions, that differs from the permissions or

restrictions returned in token parameters, then the active URL session and all opened

MedDream windows and tabs will be closed and a new URL session will be created and a

new MedDream viewer window will be opened.

9: get studies The MedDream system requests the study data from storage.

 NOTE! The study identifier and storage identifier are retrieved from token parameters.

If token contains multiple studies from multiple storages, multiple requests are made.

10: return studies The study structure and image data are returned from storage.

11: display/reload

MedDream Viewer page with

studies

The MedDream system renders the viewer page with the study images and the page is

displayed to user.

 NOTE! MedDream viewer integration provides several study opening ways: opening

in a new browser window or tab, opening in already existing MedDream viewer window or

tab, opening in iFrame included in page of Integrated IS. The opening way depends on

launching code that is implemented by Integrating IS in step ‘6: execute MedDream URL’.

See detail URL description and launching examples in section MedDream integration

interface on page 21.

 NOTE! The system may be configured (see section Related configuration options)

to open the patient studies modal with studies list instead of opening the studies directly in

the Viewer, if token contains studies for only one patient, identified by patient ID, and

system properties.

Integration scenario using JSON Web Token (JWT)

The diagram bellow explains the interaction among user, Integrating information system, and MedDream WEB DICOM

Viewer, when integrating IS uses JSON Web Token (JWT). Integrating IS can implement the token generation and validation

Scenarios for MedDream URL integration 16

services itself, or use the 3rd party self-standing application for token generation and validation. Each step is explained in

the table below the diagram.

 NOTE! jwt parameter support is available in MedDream starting from version v.7.8.0. MedDream TokenService does

not support jwt. Integrating IS should implement custom token generation and validation services.

Figure 7. Token enabled integration with JSON Web Token service implementation in Integrating IS scenario

 NOTE! The integration related steps that require handling in the Integrating IS are underlined.

Scenario step Description

1: open Integrating IS page

in browser

The user that is authenticated and working in Integrating IS, asks to open page that

contains link for opening the study in MedDream WEB DICOM Viewer page.

Scenarios for MedDream URL integration 17

Scenario step Description

2: display Integrating IS page

with view study link

The Integrating IS displaying the page with control that activates study or studies opening in

MedDream viewer implementation.

 NOTE! The user authentication and access to study control should be ensured by the

Integrating IS.

3: launch view study link The user activates the studies opening in MedDream viewer.

4: generate jwt The Integrating IS should implement the token generation functionality and generate the

token, which would be passed as parameter in MedDream URL request and validate token

request.

 NOTE! The token should not include URL escape characters. It should be URL

encoded.

5: sign jwt token with unique

IS signature (optional)

This step is optional. If IS wants MedDream to validate if jwt was signed by IS, it should use

this step and sign jwt token using its own secret key (base64 encoded).

6: execute MedDream

Viewer URL

The Integrating IS creates the MedDream WEB DICOM Viewer URL with token parameter

and launches it. It uses HTTP GET request:

http|https://IP:port/?jwt=<jwt token>

See detailed token enabled URL description and launching examples in section MedDream

integration interface on page 21

7: check if the JWT signature

“belongs” to IS (optional)

This step is optional and depends on MedDream configuration. If

authentication.his.jwtServerKey parameter is set in application.properties,

MedDream will use this secret key to validate if token is signed by IS.

 NOTE! Step 5 must be executed before step 6. Also, the validation will be applied

only if authentication.his.jwtMedDreamKey is set.

8: check if the JWT is not

expired

If "exp" property of the PAYLOAD: DATA is defined in jwt token, MedDream will check if the

value defined in “exp” field is more than current time of the MedDream server.

9: sign the token in a JWT

format with a unique

MedDream signature

(optional)

This step is optional and depends on MedDream configuration. It can be used if IS wants to

validate that jwt token was sent by MedDream.

MedDream will sign jwt token using its own secret key (base64 encoded) before sending to

IS for validation. The following parameter should be set in application.properties to enable

signature: authentication.his.jwtMedDreamKey.

 NOTE! This functionality will work only if step 7 is configured.

10: validate token request The MedDream system sends the HTTP POST request to Integrating IS jwt token

validation service to validate the jwt token. The jwt token will be sent in authorization

header using syntax Bearer: <jwt token>. The jwt token will be signed by meddream if steps

8 and 10 are enabled, otherwise, meddream will send jwt token that was specified in URL

The service should return the parameters in json body, as described in section Validate

token request on page 33.

11: check if the JWT

signature “belongs” to

MedDream (optional)

This step is optional and depends on MedDream configuration. If IS wants to use such

validation, steps 5, 7 and 9 must be executed before.

Scenarios for MedDream URL integration 18

Scenario step Description

12: encrypt parameters' json

object (optional)

MedDream allows sending encrypted parameters json using AES/GCM/NoPadding

algorithm. The following properties should be configured in both systems:

authentication.his.responseDecryptPassword

authentication.his.responseDecryptSalt

If enabled, IS should encrypt parameters json using AES/GCM/NoPadding algoritm and

properties defined above.

13: return token parameters The Integrating IS token validation service should return HTTP response with status code

and json file with parameters (studies, storages, permissions and other) for the token or

encrypted json file if step 12 is enabled or error message.

 NOTE! If step 12 is enabled, the encrypted string should be URL encoded before

sending to MedDream.

 CAUTION! The required parameters must be returned. The optional parameter may

be returned, if the parameters-related functionality is required in Integrating IS.

14: decrypt parameters' json

object (optional)

This step is optional and depends on MedDream configuration. If the following properties

are configured:

authentication.his.responseDecryptPassword

authentication.his.responseDecryptSalt

MedDream will decrypt parameters json before using it.

 NOTE! This step will work correctly if the step 12 was executed before.

15. check if studies exist MedDream tries to find the studies in the PACS according to the parameters defined in json

files.

16. list of studies PACS returns list of studies according to the parameters defined in json files.

17: create/update

MedDream URL session

The MedDream system checks the MedDream authentication status of user‘s work

environment (currently used browser) and performs the required actions: either updates the

existing session by granting the access to the studies, viewing of which is authorized by

token parameters, or initiates the user authentication based on token parameters and

creates a new session.

 CAUTION! If the active MedDream session is not a URL session, the user will be

prompted to choose either to close the current application user session and open a new

URL session, or to stay logged in as application user. If the active MedDream session is a

URL session with the permissions or restrictions, that differs from the permissions or

restrictions returned in token parameters, then the active URL session and all opened

MedDream windows and tabs will be closed and a new URL session will be created and a

new MedDream viewer window will be opened.

18: get studies The MedDream system requests the study data from storage.

 NOTE! The study identifier and storage identifier are retrieved from token parameters.

If token contains multiple studies from multiple storages, multiple requests are made.

19: return studies The study structure and image data are returned from storage.

Scenarios for MedDream URL integration 19

Scenario step Description

20: display/reload

MedDream Viewer page with

studies

The MedDream system renders the viewer page with the study images and the page is

displayed to user.

 NOTE! MedDream viewer integration provides several study opening ways: opening

in a new browser window or tab, opening in already existing MedDream viewer window or

tab, opening in iFrame included in page of Integrated IS. The opening way depends on

launching code that is implemented by Integrating IS in step ‘6: execute MedDream URL’.

See detail URL description and launching examples in section MedDream integration

interface on page 21.

 NOTE! The system may be configured (see section Related configuration options)

to open the patient studies modal with studies list instead of opening the studies directly in

the Viewer, if token contains studies for only one patient, identified by patient ID, and

system properties.

Token disabled MedDream URL integration scenario

 CAUTION! Token disabled integration is not security save.

The diagram explains the interaction among user, Integrating information system and MedDream WEB DICOM Viewer.

Each step is explained in the table below the diagram.

Scenarios for MedDream URL integration 20

Figure 8. Token disabled integration scenario

 NOTE! The integration related steps that requires handling in the Integrating IS are underlined.

Scenario step Description

1: open Integrating IS page in

browser

The user that is authenticated and working in Integrating IS, asks to open page that

contain link for opening the study in MedDream WEB DICOM Viewer page.

2: display Integrating IS page

with view study link

The Integrating IS displays the page with control that activates study or studies opening

in MedDream viewer implementation.

 NOTE! The user authentication and access to study control should be ensured by

the Integrating IS.

3: click view study link The user activates the studies opening in MedDream viewer.

4: execute MedDream Viewer

URL

The Integrating IS creates the MedDream WEB DICOM Viewer URL with study or patient

indicating parameter (for example, study UID) and launches it. See detail URL

description and launching examples in section MedDream integration interface on

page 21.

MedDream integration interface 21

Scenario step Description

5: create/update MedDream

URL session

The MedDream system checks the MedDream authentication status of user‘s work

environment (currently used browser) and performs the required actions: either updates

the existing session by granting the access to the studies, viewing of which is authorized

by parameters, or initiates the user authentication based on URL parameters and creates

the new session.

 CAUTION! If the active MedDream session is not URL session, the user will be

prompted to choose either to close the current application user session and open a new

URL session, or to stay logged in as application user.

 CAUTION! The default behavior is to destroy the active URL session and to create

a new URL session with access to studies of the last executes URL. Set

‘authentication.his.useSameSession=true’ in application properties (see parameters in

section Related configuration options) to keep access to the studies of currently active.

URL session. NOTE! The token disabled integration use the same permissions for

all URL user authentication and these permissions must be configured in application

properties (see parameters in section Related configuration options).

6: get studies The MedDream system requests the study data from storage. If multiple storages are

configured in the system, multiple requests are made

 NOTE! Multiple storage support added in MedDream v8.3.0.

 NOTE! By default, the search is performed in all configures storages. Configure

and use storage parameter in URL to perform search in particular storages.

7: return studies The study structure and image data are returned from storage.

8: display/reload MedDream

viewer page with studies

The MedDream system renders the viewer page with the study images and the page is

displayed to user.

 NOTE! MedDream viewer integration provides several study opening ways:

opening in a new browser window or tab, opening in already existing MedDream viewer

window or tab, opening in iFrame included in page of Integrated IS. The opening way

depends on launching code that is implemented by Integrating IS in step ‘4: execute

MedDream URL’. See detail URL description and launching examples in section

MedDream integration interface on page 21.

 NOTE! The system may be configured (see section Related configuration

options) to open the patient studies modal with studies list instead of opening the studies

directly in the Viewer, if patient parameter is used in URL.

MedDream integration interface

The section describes supported MedDream WEB DICOM viewer integration URLs and notes for integration developers.

• Supported URL

Short description

URL examples

Token enabled URLs:

• http|https://IP:port/?token=…

MedDream integration interface 22

• http|https://IP:port/?token=…&add=true

• http|https://IP:port/?token=…&replace=true

The token that is generated by MedDream TokenService should be passed in URL. The optional parameter ‘add=true’

should be used if opening the studies from different URLs in one MedDream viewer window is required. The optional

parameter ‘replace=true’ should be used if the studies, that are opened in MedDream viewer window, should be replaced

with the studies from new URL in the same MedDream viewer window. Otherwise a different URL will result in a new

independent viewer window with a different set of studies.

https://demo.softneta.com/?token=

ebk8n56tRY_SX0gbvSIAfLHEWl3_AK6xGI1vRCMbkDYDfSjyoROo7_uZJ1pSZo6N5IXE49HAd1i4IVF7Idw7_vJYKzQocwX-

1iZxtRNfm6w=

http://127.0.0.1:8085/?token=

ebk8n56tRY_SX0gbvSIAfLHEWl3_AK6xGI1vRCMbkDYDfSjyoROo7_uZJ1pSZo6N5IXE49HAd1i4IVF7Idw7_vJYKzQocwX-

1iZxtRNfm6w=&add=true

http://127.0.0.1:8085/?token=

ebk8n56tRY_SX0gbvSIAfLHEWl3_AK6xGI1vRCMbkDYDfSjyoROo7_uZJ1pSZo6N5IXE49HAd1i4IVF7Idw7_vJYKzQocwX-

1iZxtRNfm6w=&replace=true

• http|https://IP:port/?jwt=…

• http|https://IP:port/?jwt=…&add=true

• http|https://IP:port/?jwt=…&replace=true

 NOTE! jwt parameter support is available in MedDream starting from version v.7.8.0. MedDream TokenService does

not support jwt. Integrating IS should implement custom token generation and validation services.

The jwt as parameter should be passed in URL. The optional parameter ‘add=true’ should be used if opening the studies

from different URLs in one MedDream viewer window is required. The optional parameter ‘replace=true’ should be used if

the studies, that are opened in MedDream viewer window, should be replaced with the studies from new URL in the same

MedDream viewer window. Otherwise a different URL will result in a new independent viewer window with a different set of

studies.

http://127.0.0.1:8085/?jwt=

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiI2NDQzN2YzMC0yM2MyLTQ0NDEtOThkNi0wNWUxZGEzYzYzNGEi

LCJuYmYiOjE2MjI0NTExNTcsImV4cCI6MTYyMjQ1MTIxNywiaWF0IjoxNjIyNDUxMTU3fQ.SkZR_Y2I1PfLiO_Z9Uk1TZS7B3

5DNZyX43SA_pgnfz0&add=trueas

Token disabled URLs:

 CAUTION! To keep the studies from previously opened URLs accessible in separate or the same (if optional

parameter ‘add=true’ was used) Viewer window, ‘authentication.his.useSameSession=true’ must be set in application

properties (see parameters in section Related configuration options).

 NOTE! If parameter’s value has symbols, that could not be used in URL, such values should be encoded.

 NOTE! By default, token disabled URL session will not be created, if more than one study is found according to the

URL parameters. Set authentication.his.maxObjects to required number (see parameters in section Related configuration

options), if URL refers several studies and should open them in Viewer window.

• http|https://IP:port/?study=…

• http|https://IP:port/?study=…&add=true

• http|https://IP:port/?study=…&replace=true

MedDream integration interface 23

• http|https://IP:port/?study=…,…,…

• http|https://IP:port/?study=…,…,…&add=true

• http|https://IP:port/?study=…,…,…&replace=true

• http|https://IP:port/?study=…,…,…&storage=…,…

The study UID should be passed in URL. Comma separated multiple study UIDs are allowed. The optional parameter

‘add=true’ should be used if opening the studies from different URLs in one MedDream viewer window is required. The

optional parameter ‘replace=true’ should be used if the studies, that are opened in MedDream viewer window, should be

replaced with the studies from new URL in the same MedDream viewer window. The optional parameter ‘storage’ should be

used, if multiple storages are configured and search should be performed in particular storages. Comma separated storage

names are allowed. The passed names are validated according MedDream storage configuration.

http://demo.softneta.com/?study=1.2.826.0.1.3680043.8.1055.1.20160922221651432.55928341.45596087

https://demo.softneta.com/?study=1.2.826.0.1.3680043.8.1055.1.20160922221651432.55928341.45596087&add=true

https://demo.softneta.com/?study=1.2.826.0.1.3680043.8.1055.1.20160922221651432.55928341.45596087&replace=true

https://demo.softneta.com/?study=1.2.826.0.1.3680043.8.1055.1.20160922221651432.55928341.45596087,

1.2.840.113619.2.203.4.2147483647.1461855195.632174

https://demo.softneta.com/?study=1.2.826.0.1.3680043.8.1055.1.20160922221651432.55928341.45596087,

1.2.840.113619.2.203.4.2147483647.1461855195.632174&storage=samplePACS1,samplePACS2

• http|https://IP:port/?accnum=…

• http|https://IP:port/?accnum=…&add=true

• http|https://IP:port/?accnum=…&replace=true

• http|https://IP:port/?accnum=…&storage=…,…

The accession number should be passed in URL. The optional parameter ‘add=true’ should be used if opening the studies

from different URLs in one MedDream viewer window is required. The optional parameter ‘replace=true’ should be used if

the studies, that are opened in MedDream viewer window, should be replaced with the studies from new URL in the same

MedDream viewer window. The optional parameter ‘storage’ should be used, if multiple storages are configured and search

should be performed in particular storages. Comma separated storage names are allowed. The passed names are validated

according MedDream storage configuration.

http://demo.softneta.com/?accnum=2016042610594598

https://demo.softneta.com/?accnum=2016042610594598&add=true

https://demo.softneta.com/?accnum=2016042610594598&replace=true

http://demo.softneta.com/?accnum=2016042610594598&storage=samplePACS1,samplePACS2

• http|https://IP:port/?patient=…

• http|https://IP:port/?patient=…&add=true

• http|https://IP:port/?patient=…&storage=…,…

The patient ID should be passed in URL. The optional parameter ‘add=true’ should be used if opening the studies from

different URLs in one MedDream viewer window is required. The optional parameter ‘replace=true’ should be used if the

studies, that are opened in MedDream viewer window, should be replaced with the studies from new URL in the same

MedDream viewer window. The optional parameter ‘storage’ should be used, if multiple storages are configured and search

should be performed in particular storages. Comma separated storage names are allowed. The passed names are validated

according MedDream storage configuration.

https://demo.softneta.com/?patient=0

http://demo.softneta.com/?patient=0&add=true

MedDream integration interface 24

http://demo.softneta.com/?patient=0&replace=true

https://demo.softneta.com/?patient=0&storage=samplePACS1,samplePACS2

• http|https://IP:port/?patient=…&accnum=…

• http|https://IP:port/?patient=…&accnum=…&add=true

• http|https://IP:port/?patient=…&accnum=…&replace=true

• http|https://IP:port/?patient=…&accnum=…&storage=…,…

The patient ID and accession number should be passed in URL. Both parameters are required. The optional parameter

‘add=true’ should be used if opening the studies from different URLs in one MedDream viewer window is required. The

optional parameter ‘replace=true’ should be used if the studies, that are opened in MedDream viewer window, should be

replaced with the studies from new URL in the same MedDream viewer window. The optional parameter ‘storage’ should be

used, if multiple storages are configured and search should be performed in particular storages. Comma separated storage

names are allowed. The passed names are validated according MedDream storage configuration.

http://demo.softneta.com/?patient=0&accnum=2016042610594598

https://demo.softneta.com/?patient=0&accnum=2016042610594598&add=true

https://demo.softneta.com/?patient=0&accnum=2016042610594598&replace=true

http://demo.softneta.com/?patient=0&accnum=2016042610594598&storage=samplePACS1,samplePACS2

• http|https://IP:port/?file=…

• http|https://IP:port/?file=…&add=true

• http|https://IP:port/?file=…&replace=true

• http|https://IP:port/?file=…,…,…

• http|https://IP:port/?file=…,…,…&add=true

• http|https://IP:port/?file=…,…,…&replace=true

The relative path from rootDirectory (property of FileSystem plugin’s configuration) to studies DICOM file or catalog with

DICOM files should be passed in URL. The maxDepth (property of FileSystem plugin’s configuration) defines the depth of

search starting from the passed catalog. Comma separated multiple values are allowed. The optional parameter ‘add=true’

should be used if opening the studies from different URLs in one MedDream viewer window is required. The optional

parameter ‘replace=true’ should be used if the studies, that are opened in MedDream viewer window, should be replaced

with the studies from new URL in the same MedDream viewer window.

 NOTE! The file parameter may be used only with FileSystem plugin. The PATIENT_HISTORY permission should not

be used with URLs using file parameter.

http://demo.softneta.com/?study= test_catalog

https://demo.softneta.com/?study=test_catalog/test_study_0/1.2.826.0.1.3680043.8.1055.1.20160525124158043.63864594

4.8314464.dcm &add=true

https://demo.softneta.com/?study=test_catalog/test_study_0/1.2.826.0.1.3680043.8.1055.1.20160525124158043.63864594

4.8314464.dcm &replace=true

https://demo.softneta.com/?study=test_catalog/test_study_0,test_catalog/test_study_001

 NOTE! If parameter ‘add=true‘ or ‘replace=true’ is used, the javascript function window.open should be used for

opening the study from browser page to ensure that an existing MedDream viewer window is found and the study is opened

MedDream TokenService description 25

in it. Using a static link in form of HTML HREF attribute may not found the existing viewer and would open the study in a new

viewer.

 NOTE! When add study link is open directly in browser URL, the primary window is left open after success link open in

MedDream viewer. The window cannot be closed due to browser security (Scripts may close only the windows that were

opened by it).

Integration examples

Integration into HIS samples can be found at docker hub https://hub.docker.com/r/meddream/orthanc-dicom-viewer.

MedDream TokenService description

The MedDream TokenService is a JAVA application that provides token generation and token validation services. The

section describes the following:

• MedDream TokenService installation and configuration guidelines;

• Token generation interface;

• Token validation interface;

• Token invalidation interface;

• Token parameters.

Token parameters, that may be used in json body and passed to TokenService, vary depending on API version. The table

below describes the API support in different TokenService versions, and provides the link to appendix with parameters

description for a particular API version. In addition, information about compatibility with MedDream versions is provided.

TokenService version API list Support of released API in MedDream

v0.5 Released API v1 (see description in Annex I):

• POST /v1/generate

• GET /v1/validate

Supported API versions: v1

MedDream v7.5.1, v7.5.2, v7.6, v7.7.0,

v7.8.0, v7.8.1, v7.9.0

v0.6 Released API v2 (see description in Annex II):

• POST /v2/generate

• GET /v2/validate

Supported API versions: v1, v2

MedDream v7.6, v7.7.0, v7.8.0, v7.8.1,

v7.9.0

v0.7 Released API v3 (see description in Annex III):

• POST /v3/generate

• GET /v3/validate

• DELETE /v3/invalidate

Supported API versions: v1, v2, v3

MedDream v7.8.0, v7.8.1, v7.9.0

v0.8 Updated API v3 (see description in Annex IV)

parameters validation

Supported API versions: v1, v2, v3

New values support: MedDream v7.9.0

v0.9 Updated "patient": ["pat2"] validation (see description

in Annex V).

MedDream v7.9.0, v8.0.0

https://hub.docker.com/r/meddream/orthanc-dicom-viewer

MedDream TokenService description 26

Supported API versions: v1, v2, v3

v1.0 Updated " permissions": […] allowed values (see

description in Annex VI).

New values support: MedDream v8.1.0

v1.1 Updated " permissions": […] allowed values (see

description in Annex VII).

Updated service configuration for multiple instances

(load balance) support, secret-key and initialization-

vector parameters added. See configuration items in

next section.

New values support: MedDream v8.2.0

v1.2 Updated "studies" object and "history" array object

allowed study or studies identifiers (see description in

Annex VIII).

Released API v4 (see description in Annex VIII):

• POST /v4/generate

• GET /v4/validate

• DELETE /v4/invalidate

Supported API versions: v1, v2, v3, v4

Limited support starting from MedDream

v7.5.1

All token values support starting from

MedDream v8.3.0

 CAUTION! MedDream automatically urldecodes the token string on reception but doesn't urlencode it when passing to

the token validator. The best way is to use URL-safe values for the token, for example, encode binary content with

base64url instead of base64.

 NOTE! The Integrating IS can use other token generation and validation software as long as it supports the identical

token validation interface and parameters that are used by MedDream.

Installation and configuration

MedDream TokenService can be installed on MedDream server machine without additional hardware or software upgrade.

If MedDream TokenService is installed on separate machine, the following minimum requirements should be maintained:

• Hardware: processor 2.33GHz or higher x64-compatible; hard drive 500 MB; memory 8 GB of RAM; network 100

Mbit/s.

• Operating systems: Windows Server 2012 and newer; Windows 10 (32 bit and 64 bit) and newer; Linux (32 bit and

64 bit).

• Supporting software: JAVA 8.

Deployment:

1. Install java 8 or newer.

2. Copy jar file to wanted directory.

3. If you want to change default properties add application.properties file in the same directory as the jar, and change

properties in this file. Change spring application properties

4. Open directory in command line and run the command java -jar token-service.jar.

 NOTE! If you need to configure SSL encryption, see "SSL for the bundled Token Service" in Install Manual.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-application-property-files

MedDream TokenService description 27

The MedDream TokenService configuration options are listed in the table.

Configuration item type

• Item name: default value

Short description

Service configuration options

• com.softneta.token.cache.time-to-idle-seconds: 180

The maximum number of seconds the token can exist in the cache without being accessed.

• com.softneta.token.cache.clean-rate-milliseconds: 10000

Fixed period in milliseconds between cache clean invocations.

• com.softneta.token.one-time-token: false

If true token can be fetched only once.

NOTE: the options is not applied for tokens with LIVESHARE_GUEST permission. Use invalidate API to invalidate such

tokens.

• security.user.name:

Manager user name. Manager can access management endpoints (url sample ‘http://IP:port/manage‘ for default

management context path).

• security.user.password:

Manager password.

• security.generate.ip-white-list:

Comma separated IPs whose are granted to access token service generate endpoint, example: ‘127.0.0.1,0:0:0:0:0:0:0:1‘.

Use a single asterisk, "*", to allow everyone.

• security.validate.ip-white-list:

Comma separated IPs whose are granted to access token service validate endpoint, example: ‘127.0.0.1,0:0:0:0:0:0:0:1‘.

Use a single asterisk, "*", to allow everyone.

• management.context-path: /manage

Context path for management endpoints.

• com.softneta.token.encryption.secret-key

If empty then will be generated. Secret key must be 256 bits long. Must be provided if multiple instances are used in load

balancing.

Applicable for v1.1.

• com.softneta.token.encryption.initialization-vector

If empty then will be generated. Initialization vector must be 16 bytes long. Must be provided if multiple instances are used in

load balancing.

Applicable for v1.1.

Logging configuration

• logging.path:

Location of the log file, example ‘/var/log‘.

• logging.file: token_service.log

MedDream TokenService description 28

Log file name.

• logging.level.*: ERROR

Log levels severity mapping. For instance logging.level.ROOT=DEBUG

Embedded Server Configuration

• server.compression.enabled: true

Whether response compression is enabled.

• server.compression.mime-types: application/json

Comma-separated list of MIME types that should be compressed.

• server.port: 8080

Server HTTP port.

• server.context-path: /

Context path of the application.

• server.session.timeout: 240

JAVA session timeout in seconds.

 NOTE! API version specific TokenService configuration options are described in Annexes with description of particular

API version.

Installation testing

The section provides the samples of the cURL requests with response body, that can be used to test the TokenService after

installation:

• Generate token

curl --location --request POST 'IP:port/v1/generate' \

--header 'Content-Type: application/json' \

--data-raw '{

 "items": [

 {

 "studies": {

 "accnum": "test_number",

 "storage": "test_storage"

 }

 }

],

 "permissions": [

 "PATIENT_HISTORY", "SEARCH"

]

}

'

 NOTE! Replace the ‘IP:port’ string to the host IP and port, on which the TokenService is running.

Response body sample:

MedDream TokenService description 29

f6wZ4bcNOYUPOotYp6hxQ9sE2QRbSncpNzN1_ovb0CCcprb3Ansd8RcRiJSZQqKRCaF9gKIoycQ3dtQTMPxHo

criZnPDpvTvujHD3SyGyq8=

 NOTE! Response would be the randomly generated token and would not equal to the sample.

• Validate token

curl --location --

request GET '192.168.11.16:8085/v1/validate?token=f6wZ4bcNOYUPOotYp6hxQ9sE2QRbSncpNzN1_ovb0C

Ccprb3Ansd8RcRiJSZQqKRCaF9gKIoycQ3dtQTMPxHocriZnPDpvTvujHD3SyGyq8='

 NOTE! Replace the token (string part in bold after the ‘=’ sign) with the token, that was returned from the

generate request.

Response body:

{"items":[{"studies":{"accnum":"test_number","storage":"test_storage"}}],"permissions

":["PATIENT_HISTORY","SEARCH"]}

Generate token request

The token generation interface is implemented via HTTP POST request with token parameters passed in json body. The

request and response samples are included in the table below. The structure of json body and token parameters varies

depending on API version and are described in section Annexes.

Request and response samples

Request header sample:

POST /v3/generate HTTP/1.1

Host: 127.0.0.1:8088

Content-Type: application/json

Request body sample 1:

Opens two studies, identified by Study Instance UID, and stored in different PACS’s (or other storages). The "permissions":

[…] array is not included into token, therefore the system will use the permissions values from application properties

parameter authorization.defaultHisPermissions (see parameters in section Related configuration options). If the

authorization.defaultHisPermissions is not configured, the default permissions, allowing to view the studies images, are used,

and no of customizable MedDream functionality is allowed.

{

 "items": [

 {

 "studies": {

 "study": "1.2.840.113619.2.55.3.4271045733.996.1449464144.595",

 "storage": "Orthanc"

 }

 },

 {

 "studies": {

 "study": "1.2.826.0.1.3680043.8.1055.1.20160922221651432.55928341.45596087",

 "storage": "PacsOne"

 }

 }

MedDream TokenService description 30

]

}

Request body sample 2:

Opens one (or several, if several studies have the same accession number) study, identified by accession number.

Retrieving and viewing patient’s historical studies is allowed by including "permissions": ["PATIENT_HISTORY"] in json body.

List of history studies ("history": […]) is not included in json body. When PATIENT_HISTORY is granted and historical studies

list is not provided, the default history retrieve algorithm will be used for each study (if more than one is related with provided

accession number). The default history is collected by selecting the studies with the same patient ID from the same storage.

{

 "items": [

 {

 "studies": {

 "accnum": "20160602151858",

 "storage": "PacsOne"

 }

 }

],

 "permissions": [

 "PATIENT_HISTORY"

]

}

Request body sample 3:

Opens study, identified by accession number and patient ID pair. Retrieving and viewing patient’s history studies is allowed

by including " permissions": ["PATIENT_HISTORY"] in json body. List of history studies is collected from items in "history":

[…] array: list of studies with patient ID equal to ‘0’, and selected from storages PacsOne and Orthanc.

{

 "items": [

 {

 "studies": {

 "accnum": "20160602151858",

 "patient": "0",

 "storage": "PacsOne"

 },

 "history": [

 {

 "patient": "0",

 "storage": "PacsOne"

 },

 {

 "patient": "0",

 "storage": "Orthanc"

 }

]

 }

],

 "permissions": [

 "PATIENT_HISTORY"

]

}

Request body sample 4:

Opens two studies, identified by Study Instance UID, and stored in different PACS’s (or other storages). For all opened

studies, retrieving and viewing patient’s history studies is allowed by including " permissions": ["PATIENT_HISTORY",…] in

json body. For the first item ("study": "1.2.826.0.1.3680043.8.1055.1.20160922221651432.55928341.45596087"), list of

history studies is collected from studies in "history": […] array: list consists of two studies, including the study itself, identified

by Study Instance UID. For the second item ("study":

"1.2.826.0.1.3680043.8.1055.1.20180719151246227.498555329.93002"), historical studies list is not provided, and the

default history retrieve algorithm will be used: list consists of the studies with the same patient ID that are selected from the

same storage. For all opened studies, export to ISO archive and/or CD/DVD burn is allowed by including " permissions": […,

MedDream TokenService description 31

" EXPORT_ISO"] in json body.

{

 "items": [

 {

 "studies": {

 "study": "1.2.826.0.1.3680043.8.1055.1.20160922221651432.55928341.45596087",

 "storage": "PacsOne"

 },

 "history": [

 {

 "study": "1.2.826.0.1.3680043.8.1055.1.20131219214044458.87898881.58786776",

 "storage": "PacsOne"

 },

 {

 "study": "1.2.826.0.1.3680043.8.1055.1.20160922221651432.55928341.45596087",

 "storage": "PacsOne"

 }]

 },

 {

 "studies": {

 "study": "1.2.826.0.1.3680043.8.1055.1.20180719151246227.498555329.93002",

 "storage": "Orthanc"

 }

 }

],

 "permissions": [

 "PATIENT_HISTORY", "EXPORT_ISO"

]

}

Request body sample 5:

Opens one (or more, if several studies have the same accession number) study ONLY if the study’s patient ID equals to the

value passed in restrictions array "restrictions": {"patient": ["pt-014597"]}. Retrieving and viewing patient’s history studies is

allowed by including " permissions": ["PATIENT_HISTORY"] . List of history studies is collected by searching the studies

according the accession numbers in "history": […] array, but ONLY includes the studies of patients which patient IDs are

listed in restrictions "restrictions": {"patient": ["pt-014597"]}.

{

 "items": [

 {

 "studies": {

 "accnum": "2016_000027",

 "storage": "PacsOne"

 },

 "history": [

 {

 "accnum": "2016_000095",

 "storage": "PacsOne"

 },

 {

 "accnum": "2013_131935",

 "storage": "PacsOne"

 }]

 }

],

 "permissions": [

 "PATIENT_HISTORY"

] ,

 "restrictions": {

 "patient": ["pt-014597"]

 }

MedDream TokenService description 32

}

Request body sample 6:

Opens one (or more, if DICOM files of several studies are in folder ‘test_study_0’ or its sub-folder) study ONLY if the study’s

patient ID equals to the value passed in restrictions array "restrictions": {"patient": ["0"]}. Retrieving and viewing patient’s

history studies is allowed by including " permissions": ["PATIENT_HISTORY"] . FileSystem plugin doesn’t support the default

history search, therefor the list of files or folder for collecting the patient’s history studies must be passed in "history": […]

array.

{

 "items": [

 {

 "studies": {

 "file": "test_catalog/test_study_0",

 "storage": "FileSystem"

 },

 "history": [

 {

 "file": " test_catalog/other_sudy_0",

 "storage": " FileSystem"

 }]

 }

],

 "permissions": [

 "PATIENT_HISTORY"

] ,

 "restrictions": {

 "patient": ["0"]

 }

}

Response sample 1:

HTTP/1.1 200 OK

Date: Thu, 12 Aug 2021 19:48:08 GMT

Content-Length: 108

Content-Type: text/plain;charset=UTF-8

w10BqAQBWbtnfSInd2u5US7fFlZ8AeET_hVZbtaM4YdXj3aBQLrUpAzJ2NSurqg5OhuvkXKCRhuClSmE_JGt88jXYR33-

z29ZAuMyZ-k3B8-hgVNf-A=

Response sample 2:

HTTP/1.1 400 Bad Request

Date: Thu, 12 Aug 2021 19:50:36 GMT

Content-Length: 38

Content-Type: text/plain;charset=UTF-8

Incorrect combination: patient + study

Response status codes:

• 200 OK: the token is returned as plain text.

• 400 Bad Request: the passed parameter or values does not correspond to requirements. The additional information is

returned as plain text error.

 NOTE! The token generation request cannot be sent directly from Integrating system browser page due to Cross-origin

resource sharing (CORS) security. The request should be sent either from Integrating system server side, or the proxy to the

token service should be configured.

MedDream TokenService description 33

Validate token request

The token validation interface is implemented via HTTP GET request with token passed as request parameter and the token

parameters returned in json body. The request and response samples are included in the table below. The structure of

returned json body and token parameters varies depending on API version and are described in section Annexes.

 NOTE! It is required to use the same API version number for validate request, that was used for token generation.

Request and response samples

Request sample:

GET

/v3/validate?token=w10BqAQBWbtnfSInd2u5US7fFlZ8AeET_hVZbtaM4YdXj3aBQLrUpAzJ2NSurqg5OhuvkXKCRhuClSmE

_JGt88jXYR33-z29ZAuMyZ-k3B8-hgVNf-A=

HTTP/1.1

Host: 127.0.0.1:8088

Response sample 1:

HTTP/1.1 200 OK

Date: Thu, 12 Aug 2021 19:54:12 GMT

Content-Length: 162

Content-Type: application/json;charset=UTF-8

{

 "items": [

 {

 "studies": {

 "accnum": "20180816124124",

 "storage": "Orthanc"

 }

 }

],

 " permissions": [

 "PATIENT_HISTORY"

]

}

Response sample 2:

HTTP/1.1 404 Not Found

Date: Thu, 12 Aug 2021 19:59:01 GMT

Content-Length: 0

Response status codes:

• 200 OK: the token parameters are returned in json body.

• 404 Not Found: the passed token is invalid.

Invalidate token request

The token validation interface is implemented via HTTP DELETE request with token passed as request parameter and no

content returned. The request and response samples are included in the table below. The structure of returned json body

and token parameters varies depending on API version and are described in section Annexes.

MedDream TokenService description 34

 NOTE! It is required to use the same API version number for invalidate request, that was used for token generation.

Request and response samples

Request sample:

DELETE

/v3/invalidate?token=w10BqAQBWbtnfSInd2u5US7fFlZ8AeET_hVZbtaM4YdXj3aBQLrUpAzJ2NSurqg5OhuvkXKCRhuClSm

E_JGt88jXYR33-z29ZAuMyZ-k3B8-hgVNf-A=

HTTP/1.1

Host: 127.0.0.1:8088

Response sample 1:

HTTP/1.1 204 No Content

Date: Thu, 12 Aug 2021 19:55:43 GMT

Response status codes:

• 204 No Content: the token was deleted, if found.

Related configuration options 35

Related configuration options

The section list MedDream configuration parameters that are related to MedDream URL integration. The detail MedDream

configuration description should be checked in MedDream Servicing manual.

Configuration item type

• Item name & values example

Short description

Application properties

• spring.profiles.include=auth-inmemory,auth-his

Comma-separated list of supported authentication modes. Value ‘auth-his’ enables URL authentication, ‘auth-inmemory’

enables login authentication with internal MedDream users.

• authentication.his.token-service-address=http://127.0.0.1:8085/v1/validate

IP and port of TokenService. Defining the parameter enables the token mode and disables the direct URL parameter

passing.

• authentication.his.valid-his-params[0]=study

• authentication.his.valid-his-params[1]=patient,accnum

Supported URL parameter. Defining the parameter enables the direct URL parameter passing and disables the token mode.

The allowed values: study; file; patient; accnum; patient,accnum; storage. The array index from 0 should be used to

configure several parameters.

 CAUTION! If both authentication.his.token-service-address and authentication.his.valid-his-params is defined the

system returns error.

• authentication.his.allowOnePatientViewOnly=true

If set to true, enables restriction, that only one patient medical data may be retrieved and viewed per URL session. Default

value is false.

• authentication.his.maxObjects=0

Allowed number of studies for HIS session at authentication. Starting from MedDream v7.6, parameter is not used by default

(default value is 0).

• authentication.his.useSameSession=false

If set to true, the studies of executed URL are added to existing URL session instead of creating a new session. Default

value is false.

 NOTE! The parameter is applicable only for token disabled integration. In token enabled integration the studies are

always added to existing URL session.

• authentication.his.patient-integration-open-studies=false

If set to true, the modal dialog with patient studies list is opened instead of opening the studies directly in the viewer for the

URL with patient parameter or token, that contains one patient UID. Set it to false, if such behavior is not needed. If not set

in application properties, the default value is true.

• security.frameOptionsPolicy: ALLOW-FROM

Configures the X-Frame-Options HTTP response header. Valid values: NONE,DENY,SAMEORIGIN,ALLOW-FROM. When

NONE then header is not set, when ALLOW-FROM then valid host must be set in parameter ‘security.frameOptionsWhitelist’

• authorization.defaultHisPermissions=PATIENT_HISTORY,UPLOAD_DICOM_LIBRARY,ADMIN

Comma separated list of MedDream operations, that are granted for token disabled URL session. The list of supported

operations: EXPORT_ISO, EXPORT_ARCH, FORWARD, REPORT_VIEW, REPORT_UPLOAD, PATIENT_HISTORY,

http://127.0.0.1:8085/v1/validate

Related configuration options 36

UPLOAD_DICOM_LIBRARY, 3D_RENDERING, ADMIN, ANONYMOUS_VIEW, DOCUMENT_VIEW,

BOUNDING_BOX_VIEW, BOUNDING_BOX_EDIT, FREE_DRAW_VIEW, FREE_DRAW_EDIT, LIVESHARE_GUEST.

SMART_DRAW_VIEW, SMART_DRAW_EDIT, COPY_TO_DICOM values added to the allowed values in v0.8.

USER_SETTINGS, CLEAR_CACHE values added to the allowed values in v1.0.

PACSONE_VIEW_ONLY_PUBLIC, SHORTCUTS_EDIT, and HANGING_PROTOCOLS_EDIT value added to allowed

values in v1.1.

 NOTE! See detail description of MedDream's built-in authentication and authorization in the Install manual of the used

MedDream version.

• pacs.configurations[x].strictSearchIsEnabled=true

Enable or disable strict search based on patient ID, accession number and other attributes.

Using null (property is missing or commented) is recommended for HIS integrations and activates the following custom

search behavior for URL session:

- exact matching is implemented when searching according the URL (or token) parameters;

- non-exact matching is implemented when searching according user-selected parameters in SEARCH window (if

enabled).

 CAUTION! Check the service manual if the custom search behavior is implemented for the PACS system that you are

using.

• authentication.his.jwtServiceAddress=http://127.0.0.1:8085/validate

IP and port of jwt validation service. Defining the parameter enables the jwt mode and allows jwt URL parameter passing.

• authentication.his.jwtServerKey=s/c7157H54vNu0s7ypplPbgvQvVDHQ6sSnf4qF5T9WmI5f9ne2cUl29Sdro9iyDfpU4

0oQqOm/D/o/hKKRA0ig==

Base64 secret key to verify jwt signature. Signature is not verified, if parameter is not set. The signature will be verified only

if authentication.his.jwtMedDreamKey= is set.

• authentication.his.jwtMedDreamKey=

DjSWFtWmpv0g56OjI4xWVVOKve5hN2PNpBDisnU5QTIw94TINFaqbkG4htn0/tpQ7W4/bu9ctEEGWO66QpsVzg=

=

Base64 secret key used for resign jwt, before sending it to jwt validation service. Not signed token is sent, if parameter is not

set. It will work only if authentication.his.jwtServerKey is set.

• authentication.his.responseDecryptPassword=g9RxMRzhXfF/GG4HeV4A/w+M9zadeYVP+265oan67Z4=

• authentication.his.responseDecryptSalt=/9kzgAP3kcmXnhluapYdnw==

Base64 encoded password and salt for response from jwt validation service decryption. Not encrypted parameters json

should be returned, if parameters are not set.

System properties

• features.patientHistory=false

If set to true, allows access to patient history functionality. Default value is false.

• features.export=true

If set to true, allows access to studies export to .burn/.iso archive functionality. Default value is true.

• features.archive=true

If set to true, allows access to studies export to .zip archive functionality. Default value is true.

• features.search=true

If set to true, allows access to search window and search functionality. Default value is false.

http://127.0.0.1:8085/validate

Table of Figures 37

Table of Figures

Figure 1. MedDream Viewer and MedDream TokenService integration architecture .. 8

Figure 2. MedDream Viewer and MedDream TokenService integration components ... 8

Figure 3. One step token enabled integration scenario ... 9

Figure 4. Two steps token enabled integration scenario .. 11

Figure 5. MedDream Viewer and Integrating IS with internal token service implementation integration components 13

Figure 6. Token enabled integration with MedDream type token service implementation in Integrating IS scenario 14

Figure 7. Token enabled integration with JSON Web Token service implementation in Integrating IS scenario 16

Figure 8. Token disabled integration scenario... 20

Annex I. json structure and parameters description for API v1 38

Annex I. json structure and parameters description for API v1

Annex describes the json body structure, parameters and related TokenService configuration options for version v1.

.json structure example

{

 "items": [

 {

 "studies": {

 "accnum": "acc2",

 "patient": "pat2",

 "study": "stu1",

 "storage": "s4"

 },

 "history": [

 {

 "accnum": "acc2",

 "patient": "pat2",

 "study": "stu1",

 "storage": "s4"

 }

]

 }

],

 "permissions": [

 "DOCUMENT_VIEW",

 " ADMIN"

],

 "restrictions": {

 "patient": ["pat2"]

 }

}

Parameters description

The table below provides the structure of json body and explains the parameters: name, description and validation rules.

Parameters description Structure of json body

 {

Required. Empty array not allowed. Maximums 50 items are allowed.

Array of items, that should be allowed to access in MedDream search or viewer windows.

Each item contains the required study or studies identifiers, and optional historical

studies array for the item.

 "items":

 [

 {

Required. Empty object not allowed.

Identifiers for retrieving the study or studies.

 "studies":

 {

Required study or studies identifier. Allowed one of listed:

• "study" – one study, identified by Study Instance UID;

• "patient" – one or more studies for the patient, identified by patient ID;

• "accnum" – one or more studies, identified by accession number;

• "accnum" , "patient" – one or more studies, identified by accession number
AND patient ID;

 "accnum": "acc2",

 "patient": "pat2",

 "study": "stu1",

 "file": "path1",

Annex I. json structure and parameters description for API v1 39

• “file” – path to studies DICOM file or folder with studies DICOM files;

• "patient" , “studyDate” – one or more studies, identified by patient ID AND
study date, parameters pair added in v1.2.

 Empty value is not allowed.

If “file” identifier is used, the other identifiers are not allowed to be used in the same
token.

Required. Empty value is not allowed.

Unique source VNA/PACS identifier. Value should be identical as configured in

MedDream application properties.

 "storage": "s4"

 },

Optional. Empty array not allowed.

Array of historical studies. Each array object contains the required study or studies

identifiers and storage identifier.

 NOTE! To enable access to historical studies, you must include

permissions=["PATIENT_HISTORY"].

 NOTE! List of history studies is collected from studies, that are retrieved according

the identifiers in "history": […] array, and adding the study or studies themselves, if not

present.

 NOTE! The same historical studies list is assigned to each study, if more than one

retrieved according the identifiers in studies: {…} object, and to study from the historical

studies list, if such study is not included in any in studies: {…} object and hasn’t historical

studies list assigned.

 CAUTION! If permissions=["PATIENT_HISTORY"] is set, and "history": […] array is

not provided, the default historical studies collection is used: the studies with the same

patient ID that are selected from the same storage are collected as historical studies. If

you want to prevent such behavior, include into "history": […] array object equal to

studies: {…} object, and you will have historical studies list including only the study or

studies themselves. The default historical studies selection is not supported with

FileSystem plugin and “file” identifier.

 "history":

 [

 {

Required. Empty value is not allowed.

See parameters description and validation rules above, in studies{…} object.

 "accnum": "acc2",

 "patient": "pat2",

 "study": "stu1",

 "storage": "s4"

 }

]

 }

],

Optional. Empty array not allowed.

Customizable MedDream functionality, that is granted for the URL request using the

token. List of allowed values: EXPORT_ISO, EXPORT_ARCH, FORWARD,

REPORT_VIEW, REPORT_UPLOAD, PATIENT_HISTORY,

UPLOAD_DICOM_LIBRARY, 3D_RENDERING, ADMIN, ANONYMOUS_VIEW,

DOCUMENT_VIEW.

SMART_DRAW_VIEW, SMART_DRAW_EDIT, COPY_TO_DICOM values added to the

allowed values in v0.8.

USER_SETTINGS, CLEAR_CACHE values added to the allowed values in v1.0.

 " permissions":

 [

 "PATIENT_HISTORY",

 " ADMIN"

],

Annex I. json structure and parameters description for API v1 40

PACSONE_VIEW_ONLY_PUBLIC, SHORTCUTS_EDIT, and

HANGING_PROTOCOLS_EDIT value added to allowed values in v1.1.

If not included, the system uses the permissions from application properties parameter

authorization.defaultHisPermissions.

 NOTE! See detail description of MedDream's built-in authentication and

authorization in the Install manual of the used MedDream version.

 NOTE! The access to customizable MedDream functionality may also be restricted

by license, system properties (system.json), and settings (global.json). Please note, that

access to functionality is granted only if no other source (license, system properties, or

settings) restricts it.

Optional. Empty object not allowed.

Data access restrictions, that are applied for the URL request using the token.

 "restrictions":

 {

Optional. Empty array not allowed.

Empty object in the array not allowed, validation added in v0.9.

Array of patient IDs. Patients, which studies is allowed to be retrieved and viewed, should

be listed. Used on patient portals to provide access to only to the medical data of

authenticated patient.

 NOTE! The patient array with only one value is required, if system property

allowOnePatientViewOnly is set to true.

 "patient": ["pat2"]

 }

}

Version related configuration

TokenService does not have version v1 specific configuration options.

Annex II. json structure and parameters description for API v2 41

Annex II. json structure and parameters description for API v2

Annex describes the json body structure, parameters and related TokenService configuration options for version v2.

.json structure example

{

 "items": [

 {

 "studies": {

 "accnum": "acc1",

 "patient": null,

 "study": null,

 "storage": "storage1"

 },

 "history": [

 {

 "accnum": "acc1",

 "patient": null,

 "study": null,

 "storage": "storage1"

 }

]

 }

],

 "permissions": [

 "PATIENT_HISTORY"

],

 "restrictions": {

 "patient": [

 "p001"

]

 },

 "user": {

 "id": "123",

 "name": "user name"

 },

 "storageConfiguration": [

 {

 "storage": "s1",

 "parameters": [

 {

 "name": "parameter name",

 "value": "parameter value"

 }

]

 }

]

}

Parameters description

The table below provides the structure of json body and explains the parameters: name, description and validation rules.

Parameters description Structure of json body

 {

Required. Empty array not allowed. Maximums 50 items are allowed.

Array of items, that should be allowed to access in MedDream search or viewer

windows. Each item contains the required study or studies identifiers, and optional

 "items":

Annex II. json structure and parameters description for API v2 42

historical studies array for the item.

 [

 {

Required. Empty object not allowed.

Identifiers for retrieving the study or studies.

 "studies":

 {

Required study or studies identifier. Allowed one of listed:

• "study" – one study, identified by Study Instance UID;

• "patient" – one or more studies for the patient, identified by patient ID;

• "accnum" – one or more studies, identified by accession number;

• "accnum" , "patient" – one or more studies, identified by accession number
AND patient ID;

• “file” – path to studies DICOM file or folder with studies DICOM files;

• "patient" , “studyDate” – one or more studies, identified by patient ID AND
study date, parameters pair added in v1.2.

 Empty value is not allowed.

If “file” identifier is used, the other identifiers are not allowed to be used in the same
token.

 "accnum": "acc2",

 "patient": "pat2",

 "study": "stu1",

 "file": "path1",

Required. Empty value is not allowed.

Unique source VNA/PACS identifier. Value should be identical as configured in

MedDream application properties.

 "storage": "s4"

 },

Optional. Empty array not allowed.

Array of historical studies. Each array object contains the required study or studies

identifiers and storage identifier.

 NOTE! To enable access to historical studies, you must include

permissions=["PATIENT_HISTORY"].

 NOTE! List of history studies is collected from studies, that are retrieved

according the identifiers in "history": […] array, and adding the study or studies

themselves, if not present.

 NOTE! The same historical studies list is assigned to each study, if more than

one retrieved according the identifiers in studies: {…} object, and to study from the

historical studies list, if such study is not included in any in studies: {…} object and

hasn’t historical studies list assigned.

 CAUTION! If permissions=["PATIENT_HISTORY"] is set, and "history": […] array

is not provided, the default historical studies collection is used: the studies with the

same patient ID that are selected from the same storage are collected as historical

studies. If you want to prevent such behavior, include into "history": […] array object

equal to studies: {…} object, and you will have historical studies list including only the

study or studies themselves. The default historical studies selection is not supported

with FileSystem plugin and “file” identifier.

 "history":

 [

 {

Required. Empty value is not allowed.

See parameters description and validation rules above, in studies{…} object.

 "accnum": "acc2",

 "patient": "pat2",

 "study": "stu1",

Annex II. json structure and parameters description for API v2 43

 "storage": "s4"

 }

]

 }

],

Optional. Empty array not allowed.

Customizable MedDream functionality, that is granted for the URL request using the

token. List of allowed values: EXPORT_ISO, EXPORT_ARCH, FORWARD,

REPORT_VIEW, REPORT_UPLOAD, PATIENT_HISTORY,

UPLOAD_DICOM_LIBRARY, 3D_RENDERING, ADMIN, ANONYMOUS_VIEW,

DOCUMENT_VIEW.

SMART_DRAW_VIEW, SMART_DRAW_EDIT, COPY_TO_DICOM values added to

the allowed values in v0.8.

USER_SETTINGS, CLEAR_CACHE values added to the allowed values in v1.0.

PACSONE_VIEW_ONLY_PUBLIC, SHORTCUTS_EDIT, and

HANGING_PROTOCOLS_EDIT value added to allowed values in v1.1.

If not included, the system uses the permissions from application properties parameter

authorization.defaultHisPermissions.

 NOTE! See detail description of MedDream's built-in authentication and

authorization in the Install manual of the used MedDream version.

 NOTE! The access to customizable MedDream functionality may also be

restricted by license, system properties (system.json), and settings (global.json).

Please note, that access to functionality is granted only if no other source (license,

system properties, or settings) restricts it.

 " permissions":

 [

 "PATIENT_HISTORY",

 " ADMIN"

],

Optional. Empty object not allowed.

Data access restrictions, that are applied for the URL request using the token.

 "restrictions":

 {

Optional. Empty array not allowed.

Empty object in the array not allowed, validation added in v0.9.

Array of patient IDs. Patients, which studies is allowed to be retrieved and viewed,

should be listed. Used on patient portals to provide access to only to the medical data

of authenticated patient.

 NOTE! The patient array with only one value is required, if system property

allowOnePatientViewOnly is set to true.

 "patient": ["pat2"]

 },

Optional. Empty object not allowed.

Information about the user, who connects to the system with the token.

 "user":

 {

Optional. Empty value is not allowed.

Key for user identification in HIS and MedDream systems.

 "id": "UserID",

Optional. Empty value is not allowed.

User name, middle name, surname, used for presentation purposes.

 "name": "User name"

 },

Optional. Empty array not allowed. "storageConfiguration":

Annex II. json structure and parameters description for API v2 44

Information for granting and configuring user's access to data.

 [

 {

Required. Empty value is not allowed.

Unique source VNA/PACS identifier. Value should be identical as configured in

MedDream application properties.

 "storage": "s1",

Required. Empty array is not allowed.

Parameter for connecting to the PACS data storage and data access configuration.

 "parameters":

 [

Parameter name and value pair. Both attributes required, and empty values are not

allowed. Parameter name should be validated according the TokenService

configuration.

See the description of supported parameters per particular plugin in the Install manual

of the used MedDream version.

 {

 "name": "Name",

 "value": "Value"

 }

]

 }

]

 }

Version related configuration

The MedDream TokenService configuration options, that are related to version v2 parameters, are listed in the table.

Configuration item type

• Item name: default value

Short description

• validate.storage-configurations.parameter-list:

Comma separated list of valid parameter names, example: “dbUser“, „dbUserPassw“.

API v2 differences from API v1

The changes in v2, comparing to v1:

• “user” object added in json body;

• "storageConfiguration" object (array) added in json body;

• validate.storage-configurations.parameter-list parameter added to TokenService configuration (application.yml).

Annex III. json structure and parameters description for API v3 45

Annex III. json structure and parameters description for API v3

Annex describes the json body structure, parameters and related TokenService configuration options for version v3.

.json structure example

{

 "items": [

 {

 "studies": {

 "accnum": "acc1",

 "patient": null,

 "study": null,

 "storage": "storage1"

 },

 "history": [

 {

 "accnum": "acc1",

 "patient": null,

 "study": null,

 "storage": "storage1"

 }

]

 }

],

 "permissions": [

 "PATIENT_HISTORY"

],

 "restrictions": {

 "patient": [

 "p001"

]

 },

 "user": {

 "id": "123",

 "name": "user name"

 },

 "storageConfiguration": [

 {

 "storage": "s1",

 "parameters": [

 {

 "name": "parameter name",

 "value": "parameter value"

 }

]

 }

],

 "segmentation": {

 "segments": [

 {

 "instance": "inst1",

 "storage": "s1"

 }

]

 }
}

Annex III. json structure and parameters description for API v3 46

Parameters description

The table below provides the structure of json body and explains the parameters: name, description and validation rules.

Parameters description Structure of json body

 {

Required. Empty array not allowed. Maximums 50 items are allowed.

Array of items, that should be allowed to access in MedDream search or viewer

windows. Each item contains the required study or studies identifiers, and optional

historical studies array for the item.

 "items":

 [

 {

Required. Empty object not allowed.

Identifiers for retrieving the study or studies.

 "studies":

 {

Required study or studies identifier. Allowed one of listed:

• "study" – one study, identified by Study Instance UID;

• "patient" – one or more studies for the patient, identified by patient ID;

• "accnum" – one or more studies, identified by accession number;

• "accnum" , "patient" – one or more studies, identified by accession number
AND patient ID;

• “file” – path to studies DICOM file or folder with studies DICOM files;

• "patient" , “studyDate” – one or more studies, identified by patient ID AND
study date, parameters pair added in v1.2.

 Empty value is not allowed.

If “file” identifier is used, the other identifiers are not allowed to be used in the same
token.

 "accnum": "acc2",

 "patient": "pat2",

 "study": "stu1",

 "file": "path1",

Required. Empty value is not allowed.

Unique source VNA/PACS identifier. Value should be identical as configured in

MedDream application properties.

 "storage": "s4"

 },

Optional. Empty array not allowed.

Array of historical studies. Each array object contains the required study or studies

identifiers and storage identifier.

 NOTE! To enable access to historical studies, you must include

permissions=["PATIENT_HISTORY"].

 NOTE! List of history studies is collected from studies, that are retrieved

according the identifiers in "history": […] array, and adding the study or studies

themselves, if not present.

 NOTE! The same historical studies list is assigned to each study, if more than

one retrieved according the identifiers in studies: {…} object, and to study from the

historical studies list, if such study is not included in any in studies: {…} object and

hasn’t historical studies list assigned.

 CAUTION! If permissions=["PATIENT_HISTORY"] is set, and "history": […] array

is not provided, the default historical studies collection is used: the studies with the

same patient ID that are selected from the same storage are collected as historical

 "history":

Annex III. json structure and parameters description for API v3 47

studies. If you want to prevent such behavior, include into "history": […] array object

equal to studies: {…} object, and you will have historical studies list including only the

study or studies themselves. The default historical studies selection is not supported

with FileSystem plugin and “file” identifier.

 [

 {

Required. Empty value is not allowed.

See parameters description and validation rules above, in studies{…} object.

 "accnum": "acc2",

 "patient": "pat2",

 "study": "stu1",

 "storage": "s4"

 }

]

 }

],

Optional. Empty array not allowed.

Customizable MedDream functionality, that is granted for the URL request using the

token. List of allowed values: EXPORT_ISO, EXPORT_ARCH, FORWARD,

REPORT_VIEW, REPORT_UPLOAD, PATIENT_HISTORY,

UPLOAD_DICOM_LIBRARY, 3D_RENDERING, ADMIN, ANONYMOUS_VIEW,

DOCUMENT_VIEW, BOUNDING_BOX_VIEW, BOUNDING_BOX_EDIT,

FREE_DRAW_VIEW, FREE_DRAW_EDIT, LIVESHARE_GUEST.

SMART_DRAW_VIEW, SMART_DRAW_EDIT, COPY_TO_DICOM values added to

the allowed values in v0.8.

USER_SETTINGS, CLEAR_CACHE values added to the allowed values in v1.0.

PACSONE_VIEW_ONLY_PUBLIC, SHORTCUTS_EDIT, and

HANGING_PROTOCOLS_EDIT value added to allowed values in v1.1.

If not included, the system uses the permissions from application properties parameter

authorization.defaultHisPermissions.

 NOTE! See detail description of MedDream's built-in authentication and

authorization in the Install manual of the used MedDream version.

 NOTE! The access to customizable MedDream functionality may also be

restricted by license, system properties (system.json), and settings (global.json).

Please note, that access to functionality is granted only if no other source (license,

system properties, or settings) restricts it.

 " permissions":

 [

 "PATIENT_HISTORY",

 " ADMIN"

],

Optional. Empty object not allowed.

Data access restrictions, that are applied for the URL request using the token.

 "restrictions":

 {

Optional. Empty array not allowed.

Empty object in the array not allowed, validation added in v0.9.

Array of patient IDs. Patients, which studies is allowed to be retrieved and viewed,

should be listed. Used on patient portals to provide access to only to the medical data

of authenticated patient.

 NOTE! The patient array with only one value is required, if system property

allowOnePatientViewOnly is set to true.

 "patient": ["pat2"]

 },

Optional. Empty object not allowed.

Information about the user, who connects to the system with the token.

 "user":

Annex III. json structure and parameters description for API v3 48

 {

Optional. Empty value is not allowed.

Key for user identification in HIS and MedDream systems.

 "id": "UserID",

Optional. Empty value is not allowed.

User name, middle name, surname, used for presentation purposes.

 "name": "User name"

 },

Optional. Empty array not allowed.

Information for granting and configuring user's access to data.

 "storageConfiguration":

 [

 {

Required. Empty value is not allowed.

Unique source VNA/PACS identifier. Value should be identical as configured in

MedDream application properties.

 "storage": "s1",

Required. Empty array is not allowed.

Parameter for connecting to the PACS data storage and data access configuration.

 "parameters":

 [

Parameter name and value pair. Both attributes required, and empty values are not

allowed. Parameter name should be validated according the TokenService

configuration.

See the description of supported parameters per particular plugin in the Install manual

of the used MedDream version.

 {

 "name": "Name",

 "value": "Value"

 }

]

 }

],

Optional. Empty object not allowed.

Segmentation objects to be viewed or edited by the user.

"segmentation":

{

Optional. Empty array allowed.

Array with list of accessible RTSTRUCT instances, that contains saved segments to be

viewed or edited by the user.

 NOTE! To enable segmentation edit rights, you must include any of

permissions=["BOUNDING_BOX_EDIT", “FREE_DRAW_EDIT”]. To enable

segmentation view rights, you must include any of

permissions=["BOUNDING_BOX_VIEW", “FREE_DRAW_VIEW”]. If edit permission,

for example "BOUNDING_BOX_EDIT", is granted, the view permission

"BOUNDING_BOX_VIEW" is granted automatically for the accessible RTSTRUCT

instances.

 NOTE! If edit permission, for example permissions=["BOUNDING_BOX_EDIT"],

is set, and empty "segments":[] array is passed, the created segmentations will be

stored in a new RTSTRUCT instance in a new series.

 NOTE! If any of view or edit permission is granted, and "segments" array is not

passed (NULL), the default segmentations retrieve and/or saving procedure is applied:

the newest RTSTRUCT version from all the RT series is returned as accessible for the

URL session.

 "segments":[

Required RTSTRUCT instance identifier and storage identifier:
• "instance" – RTSTRUCT SOP instance UID;

• "storage" – Unique source VNA/PACS identifier. Value should be identical as

{

"instance": "inst1",

 "storage": "s4"

}

Annex III. json structure and parameters description for API v3 49

configured in MedDream application properties.
 Empty values are not allowed.

]

}

 }

Version related configuration

TokenService does not have version v3 specific configuration options.

API v3 differences from API v2

The changes in v3, comparing to v2:

• “segmentation” object added in json body;

• BOUNDING_BOX_VIEW, BOUNDING_BOX_EDIT, FREE_DRAW_VIEW, FREE_DRAW_EDIT,

LIVESHARE_GUEST added to allowed values of “permissions” array;

• Custom handling implementation for LiveShare guest session tokens added: one-time-token=true configuration

option is ignored for tokens with LIVESHARE_GUEST permission.

• DELETE /v3/invalidate API for token invalidation added.

Annex IV. Changes in “permissions”: […] allowed values in v0.8 50

Annex IV. Changes in “permissions”: […] allowed values in v0.8

Annex describes the changes in json parameter “permissions”: […] allowed values implemented in TokenService v0.8. The

changes apply for TokenService API versions v1, v2, and v3. The complete description and examples of corresponding

TokenService API versions see in Annexes I, II, and III.

“permissions”: […] allowed values in v0.8 differences from v0.7

The changes in “permissions”: […] allowed values in v0.8:

• SMART_DRAW_VIEW, SMART_DRAW_EDIT, COPY_TO_DICOM added to allowed values of “permissions” array.

Annex V. Changes in “patient”: […] values validation in v0.9 51

Annex V. Changes in “patient”: […] values validation in v0.9

Annex describes the changes in json parameter “patient”: […]values validation implemented in TokenService v0.9. The

changes apply for TokenService API versions v1, v2, and v3. The complete description and examples of corresponding

TokenService API versions see in Annexes I, II, and III.

“patient”: […] parameters validation in v0.9 differences from v0.8

The changes of parameters validation in v0.9:

• Empty object is not allowed in array “patient”: […].

Annex VI. Changes in “permissions”: […] allowed values in v1.0 52

Annex VI. Changes in “permissions”: […] allowed values in v1.0

Annex describes the changes in json parameter “permissions”: […] allowed values implemented in TokenService v1.0. The

changes apply for TokenService API versions v1, v2, and v3. The complete description and examples of corresponding

TokenService API versions see in Annexes I, II, and III.

“permissions”: […] allowed values in v1.0 differences from v0.9

The changes in “permissions”: […] allowed values in v1.0:

• USER_SETTINGS, CLEAR_CACHE added to allowed values of “permissions” array.

Annex VII. Changes in “permissions”: […] allowed values in v1.1 53

Annex VII. Changes in “permissions”: […] allowed values in v1.1

Annex describes the changes in json parameter “permissions”: […] allowed values implemented in TokenService v1.1. The

changes apply for TokenService API versions v1, v2, and v3. The complete description and examples of corresponding

TokenService API versions see in Annexes I, II, and III.

“permissions”: […] allowed values in v1.1 differences from v1.0

The changes in “permissions”: […] allowed values in v1.1:

• PACSONE_VIEW_ONLY_PUBLIC added to allowed values of “permissions” array;

• SHORTCUTS_EDIT added to allowed values of “permissions” array;

• HANGING_PROTOCOLS_EDIT added to allowed values of “permissions” array.

Annex VIII. json structure and parameters description for API v4 54

Annex VIII. json structure and parameters description for API v4

Annex describes the changes in json "studies" object and "history" array object: new allowed study or studies identifiers

values implemented in TokenService v1.2. The changes apply for TokenService API versions v1, v2, v3, andv4. The

complete description and examples of corresponding TokenService API versions see in Annexes I, II, III, and VIII (this

Annex).

Annex describes json body structure, parameters and related TokenService configuration options for version v4.

"studies" object and "history" array object: allowed identifiers in v1.2 differences from v1.1

The changes in "studies" object and "history" array object allowed identifiers in v1.2:

• "patient", “studyDate” – identifiers pair added to allowed study or studies identifiers.

.json structure example

{

 "items": [

 {

 "studies": {

 "accnum": "acc1",

 "patient": null,

 "study": null,

 "storage": "storage1"

 },

 "history": [

 {

 "accnum": "acc1",

 "patient": null,

 "study": null,

 "storage": "storage1"

 }

]

 }

],

 "permissions": [

 "PATIENT_HISTORY"

],

 "restrictions": {

 "patient": [

 "p001"

]

 },

 "user": {

 "id": "123",

 "name": "user name"

 },

 "storageConfiguration": [

 {

 "storage": "s1",

 "parameters": [

 {

 "name": "parameter name",

 "value": "parameter value"

 }

]

 }

],

 "segmentation": {

Annex VIII. json structure and parameters description for API v4 55

 "segments": [

 {

 "instance": "inst1",

 "storage": "s1"

 }

]

 },

 "pluginConfigurations": [

 {

 "pluginName": "name",

 "parameters": [

 {

 "name": "parameter name",

 "value": "parameter value"

 }

]

 }

]
}

Parameters description

The table below provides the structure of json body and explains the parameters: name, description and validation rules.

Parameters description Structure of json body

 {

Required. Empty array not allowed. Maximums 50 items are allowed.

Array of items, that should be allowed to access in MedDream search or viewer

windows. Each item contains the required study or studies identifiers, and optional

historical studies array for the item.

 "items":

 [

 {

Required. Empty object not allowed.

Identifiers for retrieving the study or studies.

 "studies":

 {

Required study or studies identifier. Allowed one of listed:

• "study" – one study, identified by Study Instance UID;

• "patient" – one or more studies for the patient, identified by patient ID;

• "accnum" – one or more studies, identified by accession number;

• "accnum" , "patient" – one or more studies, identified by accession number
AND patient ID;

• “file” – path to studies DICOM file or folder with studies DICOM files;

• "patient" , “studyDate” – one or more studies, identified by patient ID AND
study date, parameters pair added in v1.2.

 Empty value is not allowed.

If “file” identifier is used, the other identifiers are not allowed to be used in the same
token.

 "accnum": "acc2",

 "patient": "pat2",

 "study": "stu1",

 "file": "path1",

Required. Empty value is not allowed.

Unique source VNA/PACS identifier. Value should be identical as configured in

 "storage": "s4"

Annex VIII. json structure and parameters description for API v4 56

MedDream application properties.

 },

Optional. Empty array not allowed.

Array of historical studies. Each array object contains the required study or studies

identifiers and storage identifier.

 NOTE! To enable access to historical studies, you must include

permissions=["PATIENT_HISTORY"].

 NOTE! List of history studies is collected from studies, that are retrieved

according the identifiers in "history": […] array, and adding the study or studies

themselves, if not present.

 NOTE! The same historical studies list is assigned to each study, if more than

one retrieved according the identifiers in studies: {…} object, and to study from the

historical studies list, if such study is not included in any in studies: {…} object and

hasn’t historical studies list assigned.

 CAUTION! If permissions=["PATIENT_HISTORY"] is set, and "history": […] array

is not provided, the default historical studies collection is used: the studies with the

same patient ID that are selected from the same storage are collected as historical

studies. If you want to prevent such behavior, include into "history": […] array object

equal to studies: {…} object, and you will have historical studies list including only the

study or studies themselves. The default historical studies selection is not supported

with FileSystem plugin and “file” identifier.

 "history":

 [

 {

Required. Empty value is not allowed.

See parameters description and validation rules above, in studies{…} object.

 "accnum": "acc2",

 "patient": "pat2",

 "study": "stu1",

 "storage": "s4"

 }

]

 }

],

Optional. Empty array not allowed.

Customizable MedDream functionality, that is granted for the URL request using the

token. List of allowed values: EXPORT_ISO, EXPORT_ARCH, FORWARD,

REPORT_VIEW, REPORT_UPLOAD, PATIENT_HISTORY,

UPLOAD_DICOM_LIBRARY, 3D_RENDERING, ADMIN, ANONYMOUS_VIEW,

DOCUMENT_VIEW, BOUNDING_BOX_VIEW, BOUNDING_BOX_EDIT,

FREE_DRAW_VIEW, FREE_DRAW_EDIT, LIVESHARE_GUEST.

SMART_DRAW_VIEW, SMART_DRAW_EDIT, COPY_TO_DICOM values added to

the allowed values in v0.8.

USER_SETTINGS, CLEAR_CACHE values added to the allowed values in v1.0.

PACSONE_VIEW_ONLY_PUBLIC, SHORTCUTS_EDIT, and

HANGING_PROTOCOLS_EDIT value added to allowed values in v1.1.

If not included, the system uses the permissions from application properties parameter

authorization.defaultHisPermissions.

 NOTE! See detail description of MedDream's built-in authentication and

authorization in the Install manual of the used MedDream version.

 NOTE! The access to customizable MedDream functionality may also be

 " permissions":

 [

 "PATIENT_HISTORY",

 " ADMIN"

],

Annex VIII. json structure and parameters description for API v4 57

restricted by license, system properties (system.json), and settings (global.json).

Please note, that access to functionality is granted only if no other source (license,

system properties, or settings) restricts it.

Optional. Empty object not allowed.

Data access restrictions, that are applied for the URL request using the token.

 "restrictions":

 {

Optional. Empty array not allowed.

Empty object in the array not allowed, validation added in v0.9.

Array of patient IDs. Patients, which studies is allowed to be retrieved and viewed,

should be listed. Used on patient portals to provide access to only to the medical data

of authenticated patient.

 NOTE! The patient array with only one value is required, if system property

allowOnePatientViewOnly is set to true.

 "patient": ["pat2"]

 },

Optional. Empty object not allowed.

Information about the user, who connects to the system with the token.

 "user":

 {

Optional. Empty value is not allowed.

Key for user identification in HIS and MedDream systems.

 "id": "UserID",

Optional. Empty value is not allowed.

User name, middle name, surname, used for presentation purposes.

 "name": "User name"

 },

Optional. Empty array not allowed.

Information for granting and configuring user's access to data.

 "storageConfiguration":

 [

 {

Required. Empty value is not allowed.

Unique source VNA/PACS identifier. Value should be identical as configured in

MedDream application properties.

 "storage": "s1",

Required. Empty array is not allowed.

Parameter for connecting to the PACS data storage and data access configuration.

 "parameters":

 [

Parameter name and value pair. Both attributes required, and empty values are not

allowed. Parameter name should be validated according the TokenService

configuration.

See the description of supported parameters per particular plugin in the Install manual

of the used MedDream version.

 {

 "name": "Name",

 "value": "Value"

 }

]

 }

],

Optional. Empty object not allowed.

Segmentation objects to be viewed or edited by the user.

"segmentation":

{

Optional. Empty array allowed.

Array with list of accessible RTSTRUCT instances, that contains saved segments to be

 "segments":[

Annex VIII. json structure and parameters description for API v4 58

viewed or edited by the user.

 NOTE! To enable segmentation edit rights, you must include any of

permissions=["BOUNDING_BOX_EDIT", “FREE_DRAW_EDIT”]. To enable

segmentation view rights, you must include any of

permissions=["BOUNDING_BOX_VIEW", “FREE_DRAW_VIEW”]. If edit permission,

for example "BOUNDING_BOX_EDIT", is granted, the view permission

"BOUNDING_BOX_VIEW" is granted automatically for the accessible RTSTRUCT

instances.

 NOTE! If edit permission, for example permissions=["BOUNDING_BOX_EDIT"],

is set, and empty "segments":[] array is passed, the created segmentations will be

stored in a new RTSTRUCT instance in a new series.

 NOTE! If any of view or edit permission is granted, and "segments" array is not

passed (NULL), the default segmentations retrieve and/or saving procedure is applied:

the newest RTSTRUCT version from all the RT series is returned as accessible for the

URL session.

Required RTSTRUCT instance identifier and storage identifier:
• "instance" – RTSTRUCT SOP instance UID;

• "storage" – Unique source VNA/PACS identifier. Value should be identical as
configured in MedDream application properties.

 Empty values are not allowed.

{

"instance": "inst1",

 "storage": "s4"

}

]

},

Optional. Empty array not allowed.

Information for granting and configuring Viewer plugins.

 "pluginConfigurations":

 [

 {

Required. Empty value is not allowed.

Unique plugin name. Value should be identical as in MedDream Viewer plugins

configuration.

 "pluginName": "name",

Required. Empty array is not allowed.

Viewer plugin configuration parameters.

 "parameters":

 [

Parameter name and value pair. Both attributes required, and empty values are not

allowed. Parameter name should be allowed in Viewer plugin configuration and is

validated by MedDream application.

See the description of supported Viewer plugin parameters in the Install manual of the

used MedDream version.

 {

 "name": "Name",

 "value": "Value"

 }

]

 }

],

 }

Version related configuration

TokenService does not have version v4 specific configuration options.

API v4 differences from API v3

The changes in v4, comparing to v3:

Annex VIII. json structure and parameters description for API v4 59

• “pluginConfigurations” object added in json body.

Index 60

Index

API v1 description ... 38

API v1 json structure ... 38

API v1 parameters description ... 38

API v1 related configuration ... 40

API v1, v2, v3 changes in ‘patient’ values validation in v0.9 .. 51

API v1, v2, v3 changes in ‘permissions’ allowed values in v0.8 ... 50

API v1, v2, v3 changes in ‘permissions’ allowed values in v1.0 ... 52

API v1, v2, v3 changes in ‘permissions’ allowed values in v1.1 ... 53

API v2 description ... 41

API v2 json structure ... 41

API v2 parameters description ... 41

API v2 related configuration ... 44

API v3 description ... 45

API v3 json structure ... 45

API v3 parameters description ... 46

API v3 related configuration ... 49

API v4 description ... 54

API v4 json structure ... 54

API v4 parameters description ... 55

API v4 related configuration ... 58

Document purpose .. 4

Explanation of symbols used ... 4

Generate token request ... 29

Index .. 60

Installation and configuration ... 26

Integration scenario using JSON Web Token (JWT) ... 15

Integration scenario using MedDream token ... 13

Introduction ... 5

Invalidate token request... 33

MedDream integration interface ... 21

Minimum system requirements .. 6

One step token enabled MedDream URL integration .. 8

Related configuration options... 35

Scenarios for MedDream URL integration .. 7

Table of Contents .. 3

Table of Figures .. 37

 61

Token disabled MedDream URL integration scenario ... 19

Token enabled MedDream URL integration scenario using 3rd party token generation & validation service 13

Token enabled MedDream URL integration scenarios using MedDream TokenService.. 7

TokenService description .. 25

Two steps token enabled MedDream URL integration .. 10

Validate token request ... 33

 62

 MedDream is manufactured by Softneta UAB.

Medical device class: Regulation (EU) 2017/745

Class IIb medical device

FDA cleared K222320

ID of the notified body: 0197

Document version 1.0

Date of issue: 2023-12-15

Language: EN

Softneta UAB
K.Barsausko str. 59B

LT-51423 Kaunas, Lithuania

